Новости науки: Физики представили способ увеличить разрешающую способность микроскопов и телескопов.

Автор: Ярослав Космос . Опубликовано в категории: АСТРОФИЗИКА

1 1 1 1 1 Рейтинг 5 [3 Голоса (ов)]

Интенференция волн от двух источников.

Исследователи из Университета Торонто продемонстрировали способ увеличить разрешение микроскопов и телескопов за давно принятые ограничения, используя ранее игнорируемые свойства света.

Метод позволяет наблюдателям различать очень небольшие или удаленные объекты, которые находятся так близко друг к другу, что обычно они сливаются в единое пятно.

Телескопы и микроскопы идеально подходят для наблюдения одиночных предметов. Например, ученые могут точно обнаружить и измерить одну далекую звезду. Чем дольше они наблюдают, тем более рафинированными становятся их данные. Но обычный метод наблюдения не работает для объектов, таких как тесные двойные звезды.

Это потому, что любые, даже самые лучшие телескопы подчиняются законам физики, которые заставляют свет размываться. Если две звезды находятся так близко друг к другу, что их свет перекрывает друг друга, никакое количество наблюдений не сможет разделить их. Их индивидуальная информация безвозвратно теряется.

Более 100 лет назад, британский физик Джон Уильям Страт - более известный как Лорд Рэлей - установил минимальное расстояние между объектами, необходимое для телескопа, чтобы различить каждый объект по отдельности. "Критерий Рэлея" выстоял в качестве неотъемлемого ограничения области оптики до сих пор.

Хотя телескопы регистрируют только "интенсивность" или яркость света, свет имеет и другие свойства, которые в настоящее время, как предполагается, позволяют обойти рэлеевский критерий.

Вот так волны мешают друг другу. И не важно вода это или свет.

"Чтобы преодолеть 'проклятие Рэлея', мы должны сделать что-то необычное и умное," говорит профессор Aephraim Steinberg, физик Центра квантовой информации и квантового управления, и старший научный сотрудник в программе квантовой теории информации в Канадском институте перспективных исследований. Он ведущий автор статьи, опубликованной в журнале Physical Review Letters.

Некоторые из этих умных идей были удостоены в 2014 году Нобелевской премии по химии, отмечает Steinberg, но все эти методы все еще полагаются только на интенсивности, ограничивая ситуации, в которых они могут быть применены.

"Мы измерили еще одно свойство света называемое 'фаза'. И фаза дает столько же информации об источниках, которые расположены очень близко друг к другу, как это делают телескопы, с большой раздельной способностью. Мы пытались придумать простую вещь, которую смогли бы сделать", говорит Стейнберг. "Для того, чтобы работать с фазой, необходимо замедлить волну, и свет, на самом деле, легко замедлить."

Его команда, в том числе студенты Вэн Киан и Хью Ferretti, разделили тестовые изображения. Свет от каждой половины проходит через стекло различной толщины, которая замедляет волны разное количество раз, изменяя их соответствующие фазы. Когда пучки рекомбинируют, они создают четкие интерференционные картины, которые говорят исследователи, содержат исходное изображение одного объекта или обоих - на разрешениях далеко за пределами рэлеевского критерия.

До сих пор команда Штейнберга опробовала метод только в искусственных ситуациях, связанных с весьма ограниченными параметрами. Эта передовая идея имеет потенциальные возможности применения как в наблюдении за космосом, а также в микроскопии, где этот метод может быть использован для изучения связанных молекул и других мелких, плотно упакованных структур.

Вне зависимости от того, на сколько измерения фазы в конечном счете, улучшат разрешение изображения, Steinberg говорит, что истинное значение эксперимента заключается в перетряхивании концепции физиков "где находится информация на самом деле."

"Когда мы, например, измеряем квантовые состояния, у нас есть нечто, называемое принцип неопределенности, который говорит, что вы можете посмотреть на положение или скорость, но не на оба сразу. Вы должны выбрать то, что вам необходимо измерить. Когда вы измерили интенсивность, вы сделали выбор, и вы выбросили информацию. То, что вы узнаете, зависит от того, куда вы смотрите."
НАУЧНАЯ РАБОТА: ПО МАТЕРИАЛАМ:

НЕ ЗАБУДЬТЕ ПОДЕЛИТЬСЯ ЭТОЙ СТАТЬЕЙ:

2019-02-02 17:05:05 При помощи измерения разных фаз световых волн от двух разных источников, можно существенно поднять разрешающую способность телескопов и микроскопов, говорят ученые.
AstroNews Logo

Добавить комментарий

Комментарии нарушающие ПРАВИЛА будут удаляться, а их авторы возможно будут забанены.

СЛУЧАЙНЫЕ НОВОСТИ КОСМОСА

Новости науки: Физики подтверждают возможное открытие пятого фундаментального взаимодействия.

Физики из UCI подтверждают возможное открытие пятого фундаментального взаимодействия

Последние данные, указывающие на возможное открытие ранее неизвестных субатомных частиц могут свидетельствовать о пятом фундаментальном взаимодействии природы, согласно статье, опубликованной в журнале Physical Review Letters от физиков-теоретиков из Калифорнийского Университета в Ирвине (UCI).

В середине 2015 года исследователи UCI натолкнулись на исследования в области экспериментальной ядерной физики в Венгерской академии наук, которые искали "темные фотоны", частицы, которые связывали с невидимой темной материей.

Подробнее...

Экзопланеты: Астрономы обнаружили экзопланету размером с Нептун

Новая планета схожая по размерности с планетой Нептун в двойной звездной системе.

В ходе миссии Кеплера NASA, известную как K2 (космический телескоп), астрономы обнаружили новую планету схожей по размерности с планетой Нептун в двойной звездной системе в открытом кластере Hyades. Недавно найденная экзопланета, обозначенная как K2-nnnA b. Учёные сообщили об обнаружении 29 сентября в документе, опубликованном на сервере pre-print arXiv.

Подробнее...

Углеродная дымка Плутона охлаждает планету сильнее, чем ожидалось

Художественный рисунок о луне Харон сквозь слои атмосферы Плутона над горным ландшафтом ледяного льда, частично покрытого осаждением темных, красноватых частиц дымки.

Газовый состав атмосферы планеты обычно определяет, сколько тепла попадает в атмосферу. Однако для карликовой планеты Плутон, предсказанная температура, основанная на составе ее атмосферы, была намного выше, чем фактические измерения, сделанные космическим аппаратом NASA New Horizons в 2015 году.

В новом исследовании, опубликованном 16 ноября в Nature, предлагается новый механизм охлаждения, контролируемый частицами дымки, для учета холодной атмосферы Плутона.

Подробнее...