Новости науки: Новая частица поможет решить две основные проблемы в физике элементарных частиц.

Автор: Ярослав Космос . Опубликовано в категории: АСТРОФИЗИКА

1 1 1 1 1 Рейтинг 5 [6 Голоса (ов)]

Приблизительные регионы для поиска нового электрофобного бозона.

Несмотря на огромную энергию в 13 ТэВ LHCа, которой более чем достаточно, чтобы обнаружить множество частиц, указанных различными теоретиками, никаких новых частиц обнаружено не было, кроме бозона Хиггса в 2012 году.

В то время как отсутствие новых частиц является очень информативным само по себе, многие физики все еще "тоскуют" по "новой физике" или физике за пределами стандартной модели.

В новой статье, опубликованной в Physical Review Letters, физики Ю. Шэн Лу(Yu-Sheng Liu), Дэвид Маккин(David McKeen), и Джеральд А. Миллер(Gerald A. Miller) из Университета штата Вашингтон в Сиэтле предположили существование новой частицы, которая выглядит очень заманчиво, поскольку может одновременно решить две важные проблемы: загадку радиуса протона и расхождение в мюонных магнитных моментах, которые существенно отличаются от предсказанных стандартной моделью.

Физики описывают гипотетический новую частицу как "электрофобный бозон"(electrophobic boson) с массой между 100 кэВ и 100 МэВ. В настоящее время существует пять бозонов в стандартной модели, только один из которых является скалярным, то есть имеет нулевой спин - Бозон Хиггса. Все пять бозонов были подтверждены экспериментально.

Одной из отличительных особенностей новой гипотетической частицы является то, что она, по прогнозам, должна взаимодействовать с протонами и нейтронами и очень слабо, либо вообще не взаимодействует с электронами, что делает его "электрофобным". Ученые показали, что это "электрофобное" свойство позволило бы частице решить две проблемы: задачу радиуса протон и проблемы мюонов.

В загадке протонного радиуса, проблема в том, что радиус протона, кажется, имеет разные размеры в зависимости от того, какой тип частицы находится на его орбите. Эксперименты показали, что радиус протона немного больше, когда вокруг него обращается электрон, чем мюон, который идентичен электрону но в 200 раз тяжелее. Если исключить ошибку измерения, результаты могут указывать на существование ранее неизвестного фундаментального взаимодействия (возможно этого), которое притягивает протоны и мюоны, но не действует между протонами и электронами.

"Принцип универсальности лептонов является основой стандартной модели", сказал Миллер, обращаясь к идее, что все лептоны, в том числе электроны и мюоны, должны вести себя таким же образом. "Наша частица нарушает этот принцип, так как взаимодействие мюонов и электронов различны."

Вторая проблема связана с аномальным магнитным моментом мюона, который является мерой того, как квантовые эффекты вносят вклад в магнитный момент частицы. До сих пор наиболее точное измерение отличается от стандартной модели более чем на три стандартных отклонения. Физики считают, что несоответствие может указывать на физику за пределами стандартной модели, либо еще требуются более точные измерения. Если ответ новая физика, то новая частица покажет, что проблемы протонов и мюонов могут быть связаны между собой.

Хотя предыдущие эксперименты уже исследовали часть этого предсказанного диапазона, физики определили две неисследованные области А и B (см. Рисунок), которые могут быть именно теми местами, где частица может находиться. Они ожидают, что будущие эксперименты высокой точности с участием протонов и мюонов будут в состоянии найти частицы в этих регионах.

В то же время, физики также с нетерпением ждут улучшенных измерений аномального магнитного момента мюона и, если расхождение останется, то результаты будут давать дальнейшую поддержку существования новой частицы.

"Наша работа в этом направлении позволила нам разработать новые теоретические инструменты для оказания помощи в поиске других видов бозонов с различными квантовыми числами", сказал Миллер. "Мы будем применять эти инструменты. Другим направлением является разработка более глубокой теории, которая будет использовать наш новый бозон."

О поиске другого (а может и нет) бозона, взаимодействующего и с обычной и с темной материей мы писали ранее.

НАУЧНАЯ РАБОТА: ПО МАТЕРИАЛАМ:

НЕ ЗАБУДЬТЕ ПОДЕЛИТЬСЯ ЭТОЙ СТАТЬЕЙ:

2019-02-02 17:29:35 Новый бозон поможет решить две важные проблемы стандартной модели.
AstroNews Logo

Добавить комментарий

Комментарии нарушающие ПРАВИЛА будут удаляться, а их авторы возможно будут забанены.

СЛУЧАЙНЫЕ НОВОСТИ КОСМОСА

Астрономы обнаружили самую быстрорастущую черную дыру известную в космосе

Яркая, сверхмассивная черная дыра.

Новости астрономии:
Астрономы в ANU нашли самую быстрорастущую черную дыру, известную во Вселенной, и описали её как монстра, который каждый день поглощает массу, эквивалентную нашему солнцу.

Астрономы взглянули в прошлое более чем на 12 миллиардов лет, в те ранние темные века Вселенной, когда эта сверхмассивная черная дыра оценивалась в размере около 20 миллиардов солнечных дней с 1-процентным темпом роста каждый миллион лет.

Подробнее...

Новости космоса: учёные определили состав старого, богатого металлом шарового скопления

Оцифрованное изображение обзора неба 10 × 10 дюймов, сосредоточенное на NGC 5927.

Исследователи представили химическое исследование старого, богатого металлом шарового скопления NGC 5927. Новое исследование определяет обилие 22 элементов в семи гигантских звездах кластера. Полученные результаты доступны в документе, опубликованном 8 ноября на сервере предварительных научных публикаций arxiv.org

NGC 5927, обнаруженный в 1826 году, представляет собой шаровое скопление, расположенное на расстоянии около 7 700 световых лет от Земли. Это один из самых богатых металлом шаровых скоплений в Млечном Пути и имеет приблизительный возраст около 12,25 млрд лет.

Подробнее...

Астрономы переосмысливают природу квазара

Распределение галактик и крупным планом некоторых протокластеров, выявленных HSC. Области с более высокой и низкой плотностью представлены более красными и голубыми цветами соответственно. В крупном плане белые круги обозначают положения далеких галактик. Ожидается, что красные области будут развиваться в галактические кластеры. Из крупного плана мы можем видеть различные морфологии чрезмерно плотных областей: некоторые из них имеют другую соседнюю сверхплотную область или вытянуты, как нить, в то время как существуют также изолированные перегруженные области.

Новости космоса:
Используя Hyper Suprime-Cam (HSC), установленный на телескопе Субару, астрономы идентифицировали около 200 «протокластеров», предшественников кластеров галактик, в ранней Вселенной, около 12 миллиардов лет назад, примерно в десять раз больше, чем было известно ранее. Они также обнаружили, что квазары не склонны находиться в протокластерах; но если есть один квазар в протокластере, то поблизости, вероятно, есть второй. Этот результат вызывает сомнения в связи между протокластерами и квазарами.

Во Вселенной, галактики распределены неравномерно. Есть некоторые места, известные как кластеры, где десятки или сотни галактик находятся близко друг к другу. Другие галактики изолированы. Чтобы определить, как и почему образуются кластеры, важно исследовать не только зрелые кластеры галактик, как видно в настоящей вселенной, но также наблюдать прокластеры, скопления галактик в процессе формирования.

Подробнее...