Будущее космической колонизации: Терраформирование Марса.

Автор: Ярослав Космос . Опубликовано в категории: Статьи: Солнечная система

1 1 1 1 1 Рейтинг 5 [4 Голоса (ов)]

Фотография Марса, вверху видна полярная ледяная шапка.

Идея терраформирования Марса - превращение его в так называемого "близнеца Земли" - увлекательная идея. Таяние полярных ледяных шапок, медленное созданием атмосферы, а затем создание условий для растительности, рек и водоемов - этого достаточно, чтобы вдохновить кого угодно.

Но как долго это будет продолжаться, что это будет стоить нам, и действительно ли это эффективное использование нашего времени и энергии?

Таковы были вопросы, представленные двумя документами на семинаре NASA «Планетарное научное видение 2050 года», проходившего с 27 февраля по 1 марта этого года. Первый документ, озаглавленный «Процесс терраформации Марса» (The Terraforming Timeline), представляет собой абстрактный план превращения Красной Планеты в нечто зеленое и пригодное для жилья. Второй, под названием «Терраформация Марса - неверный путь», полностью отвергает идею терраформации и предлагает альтернативу. О втором документе можно будет почитать в этой статье.

Терраформирование Марса

Первая статья была подготовлена ​​Аароном Берлинером из Калифорнийского университета и Крисом Маккеем из Отдела космических наук Исследовательского центра НАСА в Эймсе. В своей статье два исследователя представляют последовательный график для терраформирования Марса, который включает в себя фазу потепления и фазу оксигенации (обогащение кислородом), а также все необходимые шаги, которые должны этому предшествовать и следовать:

"Терраформацию Марса можно разделить на две фазы: первая фаза включает нагрев планеты от текущей средней температуры поверхности -60oC до значений, близким к средней температуре Земли до + 15oC, и воссоздает плотную атмосферу из CO2. Эта фаза нагревания относительно проста и длится достаточно быстро - примерно 100 лет.

Вторая фаза подразумевает достижения уровня O2 в атмосфере, который позволил бы людям и другим крупным млекопитающим нормально дышать. Эта фаза оксигенации является относительно сложной и займет 100 000 лет или больше, если не произойдет какой-либо технологический прорыв".

Прежде чем начать терраформацию Марса, Берлинер и Маккей признают, что необходимо предпринять определенные «претерраформенные» шаги. К ним относятся исследования среды Марса для определения уровня воды на поверхности, уровня углекислого газа в атмосфере и в виде льда в полярных районах и количества нитратов в марсианской почве. Как они объясняют, все это - ключ к практичности создания биосферы на Марсе.

До сих пор имеющиеся данные указывают на все три элемента, существующие в изобилии на Марсе. В то время как большая часть воды Марса в настоящее время находится в виде льда в полярных районах и полярных шапках - ее там достаточно, чтобы в будущем поддерживать круговорот воды - облака, дождь, реки и озера, возможно даже моря. Между тем, по некоторым оценкам, в полярных регионах имеется достаточное количество СО2 в виде льда, чтобы создать атмосферу с давлением, равным давлению уровня моря на Земле.

О предложении создать щит из искусственной магнитосферы , который бы защитил Марс от потери атмосферы было опубликовано здесь.

Азот является также фундаментальным требованием для жизни и необходимой составной частью атмосферы, и последние данные, полученные ровером Кьюриосити(Curiosity), указывают на то, что нитраты составляют ~ 0,03% по массе почвы на Марсе, что является обнадеживающим фактом для терраформирования. Кроме того, ученым необходимо будет решить некоторые этические вопросы, связанные с тем, как терраформинг может повлиять на Марс.

Например, если в настоящее время на Марсе есть жизнь (или жизнь, которая может быть возрождена), это создало бы неоспоримую этическую дилемму для колонистов.

«Если жизнь Марса связана с земной жизнью - возможно, из-за обмена метеоритами, - то ситуация понятна, и нужно будет решать какие другие типы земной жизни нужно ввозить на Марс и когда. Однако если жизнь Марса не связана с земной жизнью и отчетливо представляет собой вторую форму развития жизни, то возникают важные технические и этические вопросы», говорят исследователи.

Чтобы пройти Фазу Один - «Фазу потепления» - за минимально короткий срок, авторы обращаются к проблеме, знакомой нам сегодня на Земле. По сути, мы изменяем наш собственный климат здесь, на Земле, внося в атмосферу CO2 и другие техногенные парниковые газы, ​​которые увеличивают среднюю температуру Земли со скоростью несколько градусов по Цельсию в течение столетия. И хотя это происходит непреднамеренно на Земле, на Марсе этот процесс можно было бы перенастроить, чтобы сознательно согреть окружающую среду.

«Сроки для потепления на Марсе после целенаправленного усилия по производству парниковых газов невелики, всего 100 лет», - утверждают они. «Если бы весь солнечный свет на Марсе был захвачен с 100%-ной эффективностью, то Марс нагрелся бы до земноподобных температур примерно через 10 лет. Однако эффективность парникового эффекта, вероятно, составляет около 10%, поэтому время, чтобы сделать Марс "тёплым" будет около 100 лет»

После создания густой атмосферы следующим шагом является превращение ее во что-то пригодное для дыхания людей - где уровень O2 будет эквивалентен приблизительно 13% атмосферного давления на уровне моря на Земле, а уровень CO2 будет составлять менее 1%. Эта фаза, известная как «фаза оксигенации», займет значительно больше времени.

Здесь, на Земле, утверждают ученые, высокий уровень кислорода и низкий уровень CO² связаны с фотосинтезом. Эти реакции основаны на энергии Солнца для преобразования воды и двуокиси углерода в биомассу, которая представлена ​​уравнением
H2O + CO2 = CH2O + O2.

«Если бы весь солнечный свет, попадающий на Марс, был задействован со 100%-ной эффективностью для осуществления этой химической трансформации, для получения высоких уровней O2 потребовалось бы всего 17 лет. Однако вероятная эффективность любого процесса, который может преобразовывать Н2О и СО2 в биомассу и O2 Гораздо меньше, чем 100%.

Единственный пример, который мы имеем в процессе, который может глобально изменить CO2 и O2 - это глобальная биология. На Земле эффективность глобальной биосферы при использовании солнечного света для вырабатываемой биомассы и O2 составляет 0,01% Таким образом, временные рамки для создания богатой кислородом атмосферы на Марсе составляют 10 000 х 17 лет, или 170 000 лет».

Тем не менее, они делают скидку на синтетическую биологию и другие биотехнологии, которые, по их утверждению, могут повысить эффективность и сократить временные рамки до 100 000 лет. Кроме того, если бы люди могли использовать естественный фотосинтез (который имеет сравнительно высокую эффективность в 5%) по всей планете, то есть насадить растительность по всему Марсу, тогда временная шкала могла бы быть уменьшена всего до нескольких столетий.

Наконец, они описывают шаги, которые необходимо предпринять, чтобы начать процесс. Эти шаги включают в себя адаптацию текущих и будущих роботизированных миссий для оценки марсианских ресурсов, математических и компьютерных моделей, которые могли бы исследовать соответствующие процессы, инициативы по созданию различных специализированных организмов для Марса, средство для тестирования методов терраформирования в ограниченных условиях и планетарное соглашение, которое установит ограничения и меры защиты.

Говоря о том, насколько долго ждать до начала терраформирования Марса, исследователи говорят, что «кое-что мы могли бы начать делать уже сейчас».

НАУЧНАЯ РАБОТА: ПО МАТЕРИАЛАМ:

НЕ ЗАБУДЬТЕ ПОДЕЛИТЬСЯ ЭТОЙ СТАТЬЕЙ:

2019-02-02 17:02:08 Терраформирование Марса будет проходить в два этапа: сначала будет наращиваться плотность атмосферы, а затем повышаться количество кислорода для дыхания.
AstroNews Logo

Добавить комментарий

Комментарии нарушающие ПРАВИЛА будут удаляться, а их авторы возможно будут забанены.

СЛУЧАЙНЫЕ НОВОСТИ КОСМОСА

НАСА предлагает выбрать название для MU69

Космический аппарат New Horizons будет летать по объекту, известному как (486958) 2014 MU69 с 1 января 2019 года.

Миссия NASA New Horizons нуждается в более ярком названии для объёкта посещения.

В 2019 году исследовательский зонд будет летать в крошечном мире поясов Койпера, который имеет на данный момент обозначение (486958) 2014 MU69. НАСА объявило в понедельник, что оно просит общественность придумать более лёгкое для запоминания и интересное имя.

Подробнее...

Дейтерированный формальдегид обнаружен в протозвезде HH 212

HH 212, наблюдаемой ALMA-Band 7.

Новости космоса:
Используя комплекс миллиметровых телескопов Atacama (ALMA) в Чили, группа исследователей обнаружила выброс дейтерированного формальдегида (HDCO) из горячей внутренней области протозвезды HH 212.

HH 212 - протозвездная система с малой массой, расположенная на расстоянии около 1300 световых лет от Земли в туманности Ориона. Предыдущие исследования этой системы, проведенные в 2016 и 2017 годах, показали, что её теплая внутренняя область оболочки, окружающая протозвезды с малой массой содержит дейтерированную воду (D 2 O) и однократно дейтерированный метанол (CH 2 DOH ).

Подробнее...

Мертвая звезда окруженная светом

Эта новая картина, созданная на изображениях телескопов на земле и в космосе, сообщает историю охоты на неуловимый недостающий объект, скрытый в сложной клубе газообразных нитей в одной из наших ближайших соседних галактик - Малом Магеллановом Облаке.
Красное изображение с фонового изображения происходит от космического телескопа НАСА / ЕКА Хаббла и показывает лучи газа, образующие остатки сверхновой 1E 0102.2-7219 зеленым цветом. Красное кольцо с темным центром находится от прибора MUSE на очень большом телескопе ESO, а синие и фиолетовые изображения - из рентгеновской обсерватории NASA Chandra. Синее пятно в центре красного цвета представляет собой изолированную нейтронную звезду со слабым магнитным полем, первое обозначенное вне Млечного пути.

Новости космоса:
Новые изображения из очень большого телескопа ESO и других телескопов показывают богатый пейзаж звезд и пылающих облаков газа в одной из наших ближайших соседних галактик - Малом Магеллановом Облаке. Изображения позволили астрономам идентифицировать неуловимый звездный труп, оставленный после взрыва сверхновой 2000-летней давности. Инструмент MUSE использовался для установления того, где этот объект скрывается, а данные рентгеновской обсерватории Chandra подтвердили его идентичность как изолированную нейтронную звезду.

Захватывающие новые снимки, созданные на изображениях как наземных, так и космических телескопов, рассказывают историю охоты на неуловимый недостающий объект, скрытый в сложном клубочке газообразных нитей в Малом Магеллановом Облаке, примерно на 200 000 световых лет от Земли.

Подробнее...