Атмосферные маяки направляют ученых НАСА в поисках жизни

Автор: Леонид Гляделов . Опубликовано в категории: ЭКЗОПЛАНЕТЫ

1 1 1 1 1 Рейтинг 0 [0 Голоса (ов)]

Маяки жизни могут помочь исследователям определить потенциально пригодные для жизни миры.

Некоторые экзопланеты светятся ярче других за пределами Солнечной системы. Новое исследование NASA предлагает новый подход к изучению экзопланетных атмосфер. Он использует частые звездные штормы, которые бросают огромные облака звездного материала и излучения в космос - от прохладных, молодых звезд карликов, чтобы выделить признаки обитаемых экзопланет.

Традиционно исследователи искали потенциальные биосигналы, как способ идентификации обитаемых миров: побочные продукты из жизни, как мы знаем, такие как кислород или метан, которые со временем накапливаются в атмосфере до обнаруживаемых количеств. Но с учетом современных технологий, по словам Владимира Айрапетяна, ведущего автора научных докладов исследования, опубликованного 2 ноября 2017 года, с указанием этих газов на дальних экзопланетах, отнимает много времени и требует значительного времени наблюдения. Новое исследование предполагает поиск более грубых признаков потенциально обитаемых миров, которые легче обнаружить с помощью текущих ресурсов за меньшее время.

«Мы находимся в поисках молекул, сформированных из фундаментальных предпосылок к молекулярному азоту, в частности молекулярному азоту, который составляет 78 процентов нашей атмосферы», - сказал Айрапетян, который является ученым-астрономом в Центре космических полетов Goddard NASA в Гринбелте, штат Мэриленд, и в американском Университет в Вашингтоне, округ Колумбия.
«Это основные молекулы, которые являются биологически дружественными и обладают сильной инфракрасной излучающей способностью, что увеличивает наши шансы обнаружить их».

Настоящая жизнь на Земле, рассказывает Айрапетян и его команда исследователей, но мы должны искать атмосферы, богатые водяным паром и азотом, а также кислородом, который является продуктом жизни. Кислород и азот свободно плавают стабильно в своей молекулярной форме, то есть два атома кислорода или азота, связанного вместе в одной молекуле. Но вблизи активной карликовой звезды экстремальная космическая погода производит различные химические реакции, которые исследователи могут использовать в качестве индикаторов состава атмосферы.

Звезды, подобные нашему Солнцу, в подростковом возрасте неспокойны и часто производят мощные извержения, которые выбросывают звездные частицы перед ними на почти световые скорости. В отличие от нашего Солнца, некоторые желтые и оранжевые звезды, которые немного прохладнее Солнца, могут продолжать производить эти сильные звездные штормы в течение миллиардов лет, вызывая частые потоки частиц высокой энергии.

Когда эти частицы достигают экзопланеты, они наполняют ее атмосферу достаточной энергией, чтобы разбить молекулярный азот и кислород на отдельные атомы, а молекулы воды - на гидроксил-один атом, каждый из кислорода и водорода, связанный вместе. Оттуда реактивные атомы азота и кислорода испускают каскад химических реакций, которые в конечном итоге производят то, что ученые называют атмосферными маяками: гидроксилом, молекулярным кислородом и оксидом азота - молекулой, состоящей из одного азота и одного атома кислорода.

Айрапетян и его коллеги использовали модель для расчета того, сколько будет образовываться оксида азота и гидроксила, и сколько озона будет разрушено в земной атмосфере вокруг активной звезды. Землеустроители десятилетиями использовали эту модель для изучения того, как озон, который образуется естественным образом, когда солнечный свет поражает кислород, - в верхней атмосфере реагирует на солнечные бури, но он нашел новое применение в этом исследовании; В конце концов, Земля - лучшее место для исследований, доступное в поисках жизни на других планетах.

Используя компьютерное моделирование, исследователи выставили атмосферу модели на космическую погоду, которую они ожидали бы от прохладной активной звезды. Они обнаружили, что озон падает до минимума и подпитывает производство атмосферных маяков.
Для исследователей эти химические реакции очень полезны. Когда звездный свет поражает атмосферу, пружинные связи внутри молекул маяка поглощают энергию и вибрируют, посылая эту энергию обратно в космос как тепло или инфракрасное излучение. Ученые знают, какие газы имеют излучение на определенных длинах волн света, поэтому, глядя на всё излучение, исходящее из атмосферы, можно понять, что находится в самой атмосфере.

Для формирования определяемого количества этих маяков требуется большое количество молекулярного кислорода и азота. Таким образом, если они будут обнаружены, эти соединения могут указывать на атмосферу, наполненную биологически дружественной химией, а также атмосферное давление как на Земле, и следовательно, возможность обитаемого мира, одну иглу в огромной стоге сена экзопланет.

Этот подход также предназначен для отсечения экзопланет без земного магнитного поля. «Планета нуждается в магнитном поле, которое защищает атмосферу и защищает планету от звездных штормов и радиации», - сказал Айрапетян. «Если звездные ветры не настолько экстремальны, чтобы сжимать магнитное поле экзопланеты вблизи его поверхности, магнитное поле препятствует атмосферному выходу, поэтому в атмосфере больше частиц и более сильный инфракрасный сигнал».

Айрапетян и его коллеги использовали данные миссии NASA по изучению Земли TIMED - короткая для Thermosphere Ionosphere Mesophere Energetics Dynamics - для моделирования того, как могут появляться инфракрасные наблюдения этих маяков. Данные поступали из инструмента спектроскопии TIMED под названием SABER-short для зондирования атмосферы с использованием широкополосной радиометрии излучения, которая изучает ту же самую химию, которая генерирует атмосферные маяки, как это происходит в верхней атмосфере Земли в ответ на солнечную активность.

«Принимая то, что мы знаем об инфракрасном излучении, излучаемом земной атмосферой, идея состоит в том, чтобы посмотреть на экзопланеты и посмотреть, какие сигналы мы можем обнаружить», - сказал Мартин Млинчак, соавтор статьи и главный исследователь SABER в НАСА Исследовательского центра Лэнгли в Хэмптоне, штат Вирджиния.
«Если мы обнаружим сигналы экзопланеты почти в той же пропорции, что и Земля, мы могли бы сказать, что планета - хороший кандидат на наличие жизни».

Данные SABER показали, что частота интенсивных звездных штормов напрямую связана с силой сигналов тепла от атмосферных маяков. С большим количеством штормов генерируются молекулы маяка, и инфракрасный сигнал будет достаточно сильным, по мнению ученых, и определяться при помощи шести-десятиметрового космического телескопа всего за два часа наблюдения.

«Это захватывающий, новый, предлагаемый способ поиска жизни», - сказал Шон Домагал-Голдман, астродинамик Годдарда, не связанный с исследованием.
«Но, как и со всеми признаками жизни, сообществование экзопланет должно подразумеваться в контексте. Каким образом немифологические процессы могут имитировать эту подпись?»

При правильной звезде эта работа может привести к новым стратегиям поиска жизни, которые идентифицируют не только потенциально пригодные для жизни планеты, но и планетные системы, поскольку способ взаимодействия атмосферы планеты со своим Солнцем, также оказывает ключевое влияние на ее пригодность для жизни. Если обнаружены перспективные сигналы, исследователи могут координировать наблюдения с будущей космической обсерваторией, такой как Космический телескоп Джеймса Уэбса НАСА, увеличивая вероятность обнаружения такой потенциальной системы.

«Новые идеи о потенциале жизни на экзопланетах в решающей степени зависят от междисциплинарных исследований, в которых данные, модели и методы используются из четырех научных разделов НАСА Годдарда: гелиофизика, астрофизика, астрономия и наука о Земле», сказал старший астрофизик Годдарда и соавтор Уильям Данчи.
«Эта смесь создает уникальные и мощные новые пути для исследований экзопланет».

НЕ ЗАБУДЬТЕ ПОДЕЛИТЬСЯ ЭТОЙ СТАТЬЕЙ:

2017-11-02 17:30:48 Некоторые экзопланеты светятся ярче других за пределами Солнечной системы. Новое исследование NASA предлагает новый подход к изучению экзопланетных атмосфер. Он использует частые звездные штормы, которые бросают огромные облака звездного материала и излучения в космос - от прохладных, молодых звезд карликов, чтобы выделить признаки обитаемых экзопланет.
AstroNews Logo

Добавить комментарий

Комментарии нарушающие ПРАВИЛА будут удаляться, а их авторы возможно будут забанены.

СЛУЧАЙНЫЕ НОВОСТИ КОСМОСА

ТОП 10 открытий марсианского зонда MAVEN за 1000 дней на орбите Марса.

Логотип марсианской миссии зонда MAVEN.

17 июня 2017 года зонд NASA MAVEN (англ. Mars Atmosphere and Volatile EvolutioN — Эволюция атмосферы и летучих веществ на Марсе) отпраздновал 1000 Земных дней на орбите вокруг Красной Планеты. С момента запуска в ноябре 2013 года и выхода на орбиту в сентябре 2014 года, MAVEN изучает верхние слои атмосферы Марса.

MAVEN дает представление о том, как солнце лишило Марс большей части атмосферы, превратив планету, возможно, пригодную для жизни - в безжизненный пустынный мир.

Подробнее...

NASA применит термометр размером с монету для исследования комет и земных астероидов

Комета Хартли-2 можно увидеть в деталях на этом изображении из эпоксидных миссии НАСА. Оно было принято как космический корабль пролетел около 435 миль. Кометные ядра, или главного тела, составляет около 1,2 километров. Самолеты можно увидеть течь из ядра. Команда Годдард хотел бы использовать микроболометр для изучения этих объектов более подробно.

Две команды НАСА хотят развернуть очень компактный, чувствительный термометр, который может характеризовать кометы и даже помочь в перенаправлении или возможном разрушении астероида при угрозе его столкновения с Землей.

Совместными усилиями исследователи из Центра космических полетов им. Годдарда НАСА в Гринбелте, штат Мэриленд, создали микродатчик, на основе технологии разработанной Goddard, его поперечное сечение минимально возможное, чтобы исследовать простые объекты, сформированные более чем 4,5 миллиарда лет назад.

Подробнее...

Эль Гордо весит ошеломляющие три квадриллиона масс солнца

Эль Гордо ACT-CLJ0102-4915 весит три квадриллиона масс солнца

Новости космоса:
В 2014 году астрономы, использующие космический телескоп NASA / ESA Hubble, обнаружили, что этот огромный галактический кластер весит ошеломляющие три квадриллиона (миллион миллиардов) солнечных масс! Поэтому неудивительно, что он получил прозвище «Эль Гордо» («Толстый» на испанском). Известный официально как ACT-CLJ0102-4915, он является самым большим, самым горячим и ярким рентгеновским галактическим кластером, когда-либо обнаруженным в далекой Вселенной.

Подробнее...