Новости космоса: Первые признаки странного квантового свойства пустого пространства?

Автор: Ярослав Космос . Опубликовано в категории: АСТРОФИЗИКА

1 1 1 1 1 Рейтинг 5 [4 Голоса (ов)]

Нейтронная звезда-Магнитар.

Изучая свет, испускаемый из чрезвычайно плотной и сильно намагниченной нейтронной звезды, астрономы, возможно, нашли первые наблюдательные признаки странного квантового эффекта, впервые предсказано в 1930 году.

Поляризация наблюдаемого света позволяет предположить, что пустое пространство вокруг нейтронной звезды является предметом квантового эффекта, известного как вакуумная двойная рефракция (vacuum birefringence).

Команда во главе с Roberto Mignani из INAF Милан (Италия), а также из Университета Зелена-Гора (Польша), использовали Очень Большой Телескоп (VLT) ESO для наблюдения нейтронной звезды RX J1856.5-3754, расположенной в 400 световых годах от Земли.

Нейтронные звезды являются очень плотными остаточными ядрами массивных звезд, которые были по крайней мере, в 10 раз более массивными, чем наше Солнце и которые взорвались как сверхновые в конце своей эволюции. Они также имеют большие магнитные поля, в миллиарды раз сильнее, чем у Солнца, которые пронизывают их наружную поверхность и окружающее пространство.

Эти поля настолько сильны, что они даже влияют на свойства пустого пространства вокруг такой звезды. Обычно вакуум представляется как абсолютная пустота, и свет может проходить через него без изменений. Но в квантовой электродинамике (КЭД), квантовая теория, описывающая взаимодействие фотонов и заряженных частиц, таких как электроны, пространство полно виртуальных частиц, которые постоянно появляются и аннигилируют. Очень сильные магнитные поля могут изменить это пространство таким образом, что оно влияет на поляризацию света, проходящего через него.

Mignani объясняет: "Согласно КЭД, высоко намагниченный вакуум ведет себя как призма для распространения света, эффект, известный как вакуумная двойная рефракция."

Эффект Квантовой Электро Динамики (КЭД) под названием Вакуумная двойная рефракция (vacuum birefringence)

Среди многих предсказаний квантовой электродинамики, для вакуумной двойной рефракции до сих пор не хватало прямого экспериментального наблюдения. Попытки обнаружить ее в лаборатории пока не удалось на протяжении 80-ти лет, с тех пор как она была предсказана в статье Вернера Гейзенберга (известная как Принцип неопределенности) и Ганс Генрих Эйлера.

"Этот эффект может быть обнаружен только при наличии чрезвычайно сильных магнитных полей, таких как те, которые существуют вокруг нейтронных звезд. Это показывает, еще раз, что нейтронные звезды являются бесценными лабораториями для изучения фундаментальных законов природы." говорит Роберто Turolla (Университет Падуи, Италия).

После тщательного анализа данных VLT, Mignani и его команда обнаружила линейную поляризацию в значительной степени около 16%. Это , как они говорят, скорее всего, связано с усиливающим эффектом вакуумной двойной рефракции, происходящим в области пустого пространства, окружающего RX J1856.5 -3754.

"Это измерение, сделано впервые сейчас в видимом свете, а также прокладывает путь к подобным измерениям, которые будут проводиться на рентгеновских длинах волн," добавляет Kinwah Wu (UCL / MSSL, Великобритания).
НАУЧНАЯ РАБОТА: ПО МАТЕРИАЛАМ:

НЕ ЗАБУДЬТЕ ПОДЕЛИТЬСЯ ЭТОЙ СТАТЬЕЙ:

2017-03-29 10:19:48 Предсказанный еще в 1930 году квантовый эффект вакумной двойной рефракции был обнаружен при помощи Очень Большого Телескопа (VLT)
AstroNews Logo

Добавить комментарий

Комментарии нарушающие ПРАВИЛА будут удаляться, а их авторы возможно будут забанены.

СЛУЧАЙНЫЕ НОВОСТИ КОСМОСА

Две титанические галактики сливаются воедино

Композитное изображение пары галактик ADFS-27. Фоновое изображение взято из космической обсерватории Гершеля ЕКА.

Астрономы впервые обнаружили эту систему с Герцельской космической обсерваторией Европейского космического агентства. Она появилась, как одна красная точка, в обзоре телескопа южного неба. Эти первоначальные наблюдения предполагали, что, по-видимому слабый объект был на самом деле как чрезвычайно ярким, так и крайне далеким.

Последующие наблюдения с помощью телескопа Atacama Pathfinder Experiment (APEX) подтвердили эти первоначальные выводы и подготовили почву для более подробных наблюдений ALMA.

Подробнее...

Охота на темную материю в самых маленьких галактиках во Вселенной

Результаты компьютерного моделирования, в котором Эриданус II находится в плотной темной материи «гало», как и ожидалось в стандартной космологической модели.

Новости астрофизики:
Астрофизики из Университета Суррея и Эдинбургского университета создали новый метод измерения количества темной материи в центре маленьких «карликовых» галактик.

Темная материя составляет большую часть массы Вселенной, но она остается неуловимой. В зависимости от её свойств она может быть плотно сконцентрирована в центрах галактик или более плавно распределена по более крупным масштабам. Сравнивая распределение темной материи в галактиках с подробными моделями, исследователи могут проверить или исключить других кандидатов темной материи.

Подробнее...

Кеплер решает тайну быстрых и яростных взрывов FELT

На этой иллюстрации показана предлагаемая модель таинственного астрономического события, называемого быстро развивающимся светящимся переходным процессом (FELT). На левой панели старая красная гигантская звезда теряет массу через звездный ветер. Это шары в огромную газовую оболочку вокруг звезды. На центральной панели массив массивной звезды взрывается, чтобы вызвать взрыв сверхновой. На правой панели сверхзвуковая ударная волна плужит во внешнюю оболочку, превращая кинетическую энергию от взрыва в яркий взрыв света. Вспышка излучения длится всего несколько дней - одна десятая - продолжительность типичного взрыва сверхновой.

Новости космоса:
Вселенная полна таинственных взрывоопасных явлений, которые бушуют в темноте. Один конкретный тип эфимерного события, называемый быстро развивающимся светящимся переходным процессом (FELT), за десятилетие сбивал с толку астрономов из-за его очень короткой продолжительности.

Теперь Космический телескоп NASA Kepler, предназначенный для охоты на планеты в нашей галактике, также использовался, чтобы поймать FELT в действии и определить их характер.

Подробнее...