Новости науки: Новая частица поможет решить две основные проблемы в физике элементарных частиц.

Автор: Ярослав Космос . Опубликовано в категории: АСТРОФИЗИКА

1 1 1 1 1 Рейтинг 5 [6 Голоса (ов)]

Приблизительные регионы для поиска нового электрофобного бозона.

Несмотря на огромную энергию в 13 ТэВ LHCа, которой более чем достаточно, чтобы обнаружить множество частиц, указанных различными теоретиками, никаких новых частиц обнаружено не было, кроме бозона Хиггса в 2012 году.

В то время как отсутствие новых частиц является очень информативным само по себе, многие физики все еще "тоскуют" по "новой физике" или физике за пределами стандартной модели.

В новой статье, опубликованной в Physical Review Letters, физики Ю. Шэн Лу(Yu-Sheng Liu), Дэвид Маккин(David McKeen), и Джеральд А. Миллер(Gerald A. Miller) из Университета штата Вашингтон в Сиэтле предположили существование новой частицы, которая выглядит очень заманчиво, поскольку может одновременно решить две важные проблемы: загадку радиуса протона и расхождение в мюонных магнитных моментах, которые существенно отличаются от предсказанных стандартной моделью.

Физики описывают гипотетический новую частицу как "электрофобный бозон"(electrophobic boson) с массой между 100 кэВ и 100 МэВ. В настоящее время существует пять бозонов в стандартной модели, только один из которых является скалярным, то есть имеет нулевой спин - Бозон Хиггса. Все пять бозонов были подтверждены экспериментально.

Одной из отличительных особенностей новой гипотетической частицы является то, что она, по прогнозам, должна взаимодействовать с протонами и нейтронами и очень слабо, либо вообще не взаимодействует с электронами, что делает его "электрофобным". Ученые показали, что это "электрофобное" свойство позволило бы частице решить две проблемы: задачу радиуса протон и проблемы мюонов.

В загадке протонного радиуса, проблема в том, что радиус протона, кажется, имеет разные размеры в зависимости от того, какой тип частицы находится на его орбите. Эксперименты показали, что радиус протона немного больше, когда вокруг него обращается электрон, чем мюон, который идентичен электрону но в 200 раз тяжелее. Если исключить ошибку измерения, результаты могут указывать на существование ранее неизвестного фундаментального взаимодействия (возможно этого), которое притягивает протоны и мюоны, но не действует между протонами и электронами.

"Принцип универсальности лептонов является основой стандартной модели", сказал Миллер, обращаясь к идее, что все лептоны, в том числе электроны и мюоны, должны вести себя таким же образом. "Наша частица нарушает этот принцип, так как взаимодействие мюонов и электронов различны."

Вторая проблема связана с аномальным магнитным моментом мюона, который является мерой того, как квантовые эффекты вносят вклад в магнитный момент частицы. До сих пор наиболее точное измерение отличается от стандартной модели более чем на три стандартных отклонения. Физики считают, что несоответствие может указывать на физику за пределами стандартной модели, либо еще требуются более точные измерения. Если ответ новая физика, то новая частица покажет, что проблемы протонов и мюонов могут быть связаны между собой.

Хотя предыдущие эксперименты уже исследовали часть этого предсказанного диапазона, физики определили две неисследованные области А и B (см. Рисунок), которые могут быть именно теми местами, где частица может находиться. Они ожидают, что будущие эксперименты высокой точности с участием протонов и мюонов будут в состоянии найти частицы в этих регионах.

В то же время, физики также с нетерпением ждут улучшенных измерений аномального магнитного момента мюона и, если расхождение останется, то результаты будут давать дальнейшую поддержку существования новой частицы.

"Наша работа в этом направлении позволила нам разработать новые теоретические инструменты для оказания помощи в поиске других видов бозонов с различными квантовыми числами", сказал Миллер. "Мы будем применять эти инструменты. Другим направлением является разработка более глубокой теории, которая будет использовать наш новый бозон."

О поиске другого (а может и нет) бозона, взаимодействующего и с обычной и с темной материей мы писали ранее.

НАУЧНАЯ РАБОТА: ПО МАТЕРИАЛАМ:

НЕ ЗАБУДЬТЕ ПОДЕЛИТЬСЯ ЭТОЙ СТАТЬЕЙ:

2017-03-12 11:49:05 Новый бозон поможет решить две важные проблемы стандартной модели.
AstroNews Logo

Добавить комментарий

Комментарии нарушающие ПРАВИЛА будут удаляться, а их авторы возможно будут забанены.

СЛУЧАЙНЫЕ НОВОСТИ КОСМОСА

Безопасный режим обновления и восстановления состояния Gaia

Безопасный режим обновления и восстановления состояния Gaia

Новости космоса:
В прошлом месяце спутник Gaia ESA испытал техническую аномалию, за которой последовало событие «безопасного режима». После тщательной проверки космический корабль был успешно восстановлен и возобновил нормальные научные операции, в то время как команда миссии продолжает расследование точной причины аномалии.

18 февраля ошибки двух электрических блоков в сервисном модуле Gaia привели к тому, что космический аппарат запускал автоматический безопасный режим.

Подробнее...

Биологи создали карту лучших районов для земледелия на Марсе

Художественный образ земледелия на Марсе

Новости космоса:
Ученые из Нидерландов рассказали, какие характеристики грунта позволят выращивать овощи на Марсе.

Исследователи из Вагенингенского университета в Нидерландах составили карту районов Марса, в перспективе наиболее пригодных для выращивания овощей и злаковых. Биологи учли особенности почвы, наличие льда и другие характеристики. Подробности доступны на сайте университета.

Подробнее...

Недавно обнаруженные двойные планеты могут помочь решить загадку

Планета, надутая своей звездой-хозяином. Верхний левый: схема системы K2-132 на основной последовательности. Нижняя левая: схема системы K2-132. Звезда хозяина стала краснее и больше, больше облучая планету и тем самым увеличивая ее. Размеры не масштабируются. Основная панель: Газовая гигантская планета K2-132b расширяется, поскольку ее звезда-хозяин превращается в красного гиганта. Энергия от звезд хозяина переносится с поверхностью планеты в ее глубокий интерьер, вызывая турбулентность и глубокое перемешивание в планетной атмосфере. Планета вращается вокруг своей звезды каждые 9 дней и находится примерно в 2000 году.

Поскольку астрономы впервые измерили размер внесолнечной планеты семнадцать лет назад, они изо всех сил пытались ответить на вопрос: как величайшие планеты стали такими большими?
Благодаря недавнему открытию двойных планет из Университета Гавайского института астрономии, возглавляемого аспирантом Самуэлем Грюнблаттом, мы приближаемся к ответу на этот вопрос.

Планеты газового гиганта в основном состоят из водорода и гелия, и по крайней мере, в 4 раза больше диаметра Земли. Планеты газового гиганта, которые блистают близко к их звездам-хозяевам, известны как «горячие юпитеры». Эти планеты имеют массы, подобные Юпитеру и Сатурну, но имеют тенденцию быть намного больше - некоторые из них надуваются до размеров, даже больших, чем самые маленькие звезды.

Подробнее...